
DRAFT 1September 18, 1996 [ISS.net.measurement-tool.1.9.fm]

Performance Analysis in High-Speed Wide Area IP over ATM Networks:
Top-to-Bottom End-to-End Monitoring

Brian Tierney,
William Johnston,

Jason Lee, and Gary Hoo

Imaging and Distributed Computing Group
Ernest Orlando Lawrence Berkeley National Laboratory1

University of California
Berkeley, CA, 94720

Abstract

We describe an approach to the analysis of the performance of distributed applications in high-speed
wide-area networks. The approach is designed to identify all of the issues that impact performance, and
isolate the causes due to the related hardware and software components. We also describe the use of a dis-
tributed parallel data server as a network load generator that can be used in conjunction with this
approach to probe various aspects of high-speed distributed systems from top-to-bottom of the protocol
stack and from end-to-end in the network. To demonstrate the utility of this approach we present the anal-
ysis of a TCP over ATM problem that was uncovered while developing this methodology. This work was
done in conjunction with the ARPA-funded MAGIC gigabit testbed.

Contents
1.0 Introduction .. 2
2.0 Monitoring Mechanisms .. 2

2.1 MAGIC and the Distributed Parallel Storage System (DPSS) 2
2.2 OS and Network Layer Monitoring ... 6

3.0 Monitoring Tools .. 6
3.1 Common logging format ... 6
3.2 Log File Analysis Tools .. 7
3.4 OS and Network Analysis Tools ... 7

4.0 Analysis and Results .. 8
4.1 Network Tuning ... 8
4.2 DPSS Performance .. 9
4.3 End-to-End Performance Experiments .. 10

5.0 Computer Platform-Based Performance Issues ... 24
6.0 Conclusions .. 26
7.0 Future Work ... 27
8.0 References .. 27

1. The work described in this paper is supported by ARPA, Computer Systems Technology Office (http://ftp.arpa.mil/
ResearchAreas.html) and the U. S. Dept. of Energy, Office of Energy Research, Office of Computational and Technology
Research, Mathematical, Information, and Computational Sciences Division (http://www.er.doe.gov/production/octr/mics),
under contract DE-AC03-76SF00098 with the University of California. Authors: tierney@george.lbl.gov,
wejohnston@lbl.gov, Lawrence Berkeley National Laboratory, mail stop: B50B-2239, Berkeley, CA, 94720, ph:
510-486-5014, fax: 510-486-6363, http://www-itg.lbl.gov). This is report no. LBL-38246.

DRAFT 2September 18, 1996 [ISS.net.measurement-tool.1.9.fm]

1.0 Introduction

The MAGIC testbed is a large-scale, high-speed, ATM network: It is a heterogeneous collection of ATM
switches and computing platforms, several different implementations of IP over ATM, a collection of
“middleware” (distributed services), etc., all of which must cooperate in order to make a complex appli-
cation operate at high speed. As developers of high-speed network-based distributed services, we often
observe unexpectedly low network throughput and/or high latency. The reason for the poor performance
is frequently not obvious. The bottlenecks can be (and have been) in any of the components: the applica-
tions, the operating systems, the device drivers, the network adapters on either the sending or receiving
host (or both), the network switches and routers, and so on. It is difficult to track down performance prob-
lem because of the complex interaction between the many distributed system components, and the fact
that problems in one place may be most apparent somewhere else.

Network performance tools such at “ttcp” and “netperf” are commonly used to determine the throughput
between hosts on the network. While these are useful tools to start with, we have observed many cases
where ttcp performance is reasonable, but real application performance is still poor. Real distributed
applications are complex, bursty, and have more than one connection in and/or out of a given host at one
time; tools like ttcp do not adequately simulate these conditions.

We have developed a methodology and tools for monitoring, under realistic operating conditions, the
behavior of all the elements of the application-to-application communications path in order to determine
exactly what is happening within this complex system. We have instrumented our applications to do
timestamping and logging at every critical point. We have also modified some of the standard Unix net-
work and operating system monitoring tools to log “interesting” events using a common log format. This
monitoring functionality is designed to facilitate performance tuning and network performance research.
This allows us to measure network performance in a manner that is a much better “real-world” test than
ttcp. It also allows us to measure throughput and latency characteristics of our distributed application
code.

The goal of this work is to produce predictable, high-speed components that can be used as building
blocks for high-performance applications, rather than having to “tune” the applications top-to-bottom as
is all too common today. In this paper we describe the techniques for monitoring and analysis, and some
experimental results from using this method. We also describe the architecture and performance of a pro-
totype application and a distributed - parallel data server, called the DPSS (Distributed Parallel Storage
System, formerly known as the Image Server System, or ISS), that is used to drive many of the experi-
ments.

2.0 Monitoring Mechanisms

We have instrumented several applications and servers, and have generated tools to monitor the system at
many levels. As messages enter and leave all parts of the user-level system, timestamps are taken and
logged using a common logging format. Several of these instrumented applications and tools are
described below.

2.1 MAGIC and the Distributed Parallel Storage System (DPSS)

We have designed and implemented a wide area network-based, distributed-parallel storage system as
part of an ARPA-funded collaboration known as the MAGIC gigabit testbed [13], and as part of DOE’s
high-speed distributed computing program. This technology has been quite successful in several environ-
ments. The DPSS provides an economical, high-performance, widely distributed, and highly scalable
architecture for caching large amounts of data that can potentially be used by many different users. Our

DRAFT 3September 18, 1996 [ISS.net.measurement-tool.1.9.fm]

current implementation is optimized for providing access to large, image-like, read-mostly data sets. In
the MAGIC testbed, the DPSS is distributed across several sites separated by more than 1000 Km of high
speed network that uses IP over ATM as the network protocol, and is used to store very high resolution
images of several geographic areas. “TerraVision” is a terrain visualization application that uses the
DPSS to let a user explore / navigate a “real” landscape represented in 3D by using ortho-corrected, one
meter per pixel images and digital elevation models (see [10]). TerraVision requests from the DPSS, in
real time, the sub-images (“tiles”) needed to provide a view of a landscape for an autonomously “mov-
ing” user. Typical use requires aggregated data streams as high as 100 to 200 Mbits/sec. Even the current
prototype DPSS is easily able to supply these data rates using several disk servers distributed across the
network.

The combination of the distributed nature of the DPSS the high data rates required by TerraVision and
various load simulators makes this a good system with which to test a high-speed network in a much
more realistic manner than ttcp-like tools allow.

2.1.1 DPSS System Architecture

The DPSS is an implementation of a distributed-parallel data storage architecture. It is essentially a logi-
cal “block” server that is distributed across a wide area network, and is used to supply data to applications
located anywhere in the network. Figure 1 illustrates the architecture. There is no particular organization

assumed for the data blocks; the DPSS inherently provides random access. However, disk layout strate-
gies that maximize parallelism are clearly desirable. The data organization is determined by the applica-
tion as a function of data structures and access patterns, and is implemented during a data load process.
When data structures and access patterns are well understood, specific placement algorithms can be
designed to optimize data placement for maximum parallelism, as is the case with TerraVision (e.g. see

ATM
network
interface

DPSS server

ATM

workstation

data blocks

ATM switch
single
high

bandwidth
 sink (or
source)ATM network

(interleaved cell streams
representing multiple

virtual circuits)

D
P

S
S

AT
M

C
lie

nt
 a

pp
lic

at
io

n

A
P

I

block requests

data
requests

ATM
network
interface

data
structure
 server

logical
name

translation

DPSS server
workstation

data blocks

DPSS server
workstation

data blocks

D
P

S
S

AT
M

DPSS Master

Figure 1 Distributed-Parallel Server System Architecture

DRAFT 4September 18, 1996 [ISS.net.measurement-tool.1.9.fm]

[4]). In other cases blocks can be scattered randomly across the disks and servers, a strategy that can work
surprisingly well. The usual goal of the data organization is that data is declustered (dispersed in such a
way that as many system elements as possible can operate simultaneously to satisfy a given request)
across both disks and servers. This strategy allows a large collection of disks to seek in parallel, and all
servers operate in parallel to send the requested data to the application, enabling the DPSS to perform as
a high-speed data server.

At the present state of development and experience, the DPSS that we describe here is used primarily as a
large, fast, wide area network distributed “cache”. Reliability with respect to data corruption is provided
only by the usual OS and disk mechanisms, and data delivery reliability of the overall system is a func-
tion of user-level strategies of data replication and/or re-request and retransmission.

2.1.2 Client Use of the DPSS

The client-side (application) use of the DPSS is provided through a library-based API that handles initial-
ization (for example, an “open” of a data set requires discovering all of the disk servers with which the
application will have to communicate) and the basic block request / receive interface. It is the responsibil-
ity of the client (or, more typically, its agent - a data object structure server) to maintain information about
higher-level organization of the data blocks; to maintain sufficient local buffering so that “smooth play-
out” requirements may be met locally; and to run predictor algorithms that will pre-request blocks so that
application response time requirements can be met. The prediction algorithm enables pipelining of the
operation of the disk servers with the goal of overcoming the inherent latency of the disks. (See [17] and
[19]). None of this has to be explicitly visible to the user-level application, but some agent in the client
environment must deal with these issues because the DPSS always operates on a best-effort basis: if it did
not deliver a requested block in the expected time or order, it was because it was not possible to do so. In
fact, a typical mode of operation is that pending block requests are flushed from the disk server read
queues when the next set of requests arrive from the application. The application then routinely
re-requests some fraction of the data. This deliberate “overloading” of the disk servers ensures that they
will be kept busy looking for relevant blocks on disk and caching them in server memory. This behavior
is one aspect of the pipelining strategy on the servers.

2.1.3 DPSS Implementation

In our prototype implementations, the typical DPSS consists of several (four - five) Unix workstations
(e.g. Sun SPARCStation, DEC Alpha, SGI Indigo, etc.), each with several (four - six) fast-SCSI disks on
multiple (two - three) SCSI host adapters. Each workstation is also equipped with an ATM network inter-
face. A DPSS configuration such as this can deliver an aggregated data stream to an application at about
400 Mbits/s (50 Mbytes/s), using these relatively low-cost, “off the shelf” components, by exploiting the
parallelism provided by approximately five disk servers, twenty disks, ten SCSI host adapters, and five
network interfaces.

The software implementation is based on Unix interprocess communication mechanisms and a POSIX
threads programming paradigm to manage resources on the disk servers (see [17] and [21]). The three
primary operating systems (Sun’s Solaris, DEC’s OSF, and (soon) SGI’s IRIX) all have slightly different
implementations of threads, but they are close enough that maintaining a single source is not too difficult.

The implementation supports a number of transport strategies, including TCP/IP, RTP/IP [15] and UDP/
IP. RTP and UDP do not guarantee reliable data delivery and never retransmit. Lost data are handled at
the application level. This approach is appropriate when data has an age determined value: data not
received by a certain time is no longer useful, and therefore should not be retransmitted. This is the case
for certain visualization scenarios. (This paper, however, focuses on TCP performance issues.)

DRAFT 5September 18, 1996 [ISS.net.measurement-tool.1.9.fm]

Other papers describing the DPSS are [20], which focus on the major implementation issues, [17], which
focuses on the architecture and approach, as well as optimization strategies, and [21], which focuses on
DPSS applications and DPSS performance issues.

2.1.4 DPSS Timing Facility

A request for a data block takes the following path through the DPSS (see Figure 2). A request (a list of
blocks) goes from the application to the name server, where the logical block names are translated to
physical addresses (server: disk: disk offset), then the individual requests are forwarded to the appropriate
disk servers. At the disk servers, the data is read from disk into local cache, and then sent to the applica-
tion (which has connections to all the relevant servers). Timestamps are gathered before and after each
major function, such as name translation, disk read, and network send. All timestamps are then logged by
the DPSS servers so that the precise timing of each step is noted for each data block. The timestamps are
also sent, with the data block, to the requesting application, where logging can be performed using the
DPSS client library.

Timestamp consistency is provided by GPS-based NTP (described below), which allows us to make pre-
cise throughput and latency measurements throughout the DPSS system and underlying network. Instead
of trying to analyze the aggregate delay between sending a request and receiving the associated data
block (tile), we can pinpoint delays to within narrowly-specified steps in the data path.

DPSS master/
name server

Writer
(output
to net)

memory cache

- recv block list
- search cache

(timings are for a Sun Sparc-10-51)

disk
reader

disk
reader

disk
reader

disk
reader

(block = 48 KBy)

24 ms / block avg.
disk to cache

7 ms/block

location of requested blocks in-cache:
on-disk = 1:10 to 1:20

ot
he

r
D

P
S

S
se

rv
er

s

TerraVision

request blocks

receive blocks

4 ms/block

name
translation 4 ms/block

TS-8

TS-2

TS-1

TS-0

TS-3

TS-5

TS-6

TS-4

TS-7

TS = time stamp

DPSS disk server

Figure 2 DPSS Performance Characterization Points and Optimal Average Timings

START

DRAFT 6September 18, 1996 [ISS.net.measurement-tool.1.9.fm]

2.1.5 Prototype Clients: TerraVision and tv_sim

TerraVision uses the DPSS client library’s logging facilities to log events associated with an application
session. It also uses the same log format to monitor a data block’s progress from the network into the
graphics pipeline. We have developed a simulator program,tv_sim, that can (among other things) gener-
ate data requests and receive data blocks from the DPSS in a manner similar to TerraVision’s. Using this
program we can generate synthetic request patterns, or repeatedly use actual TerraVision session tile
request traces, and attempt to verify and analyze performance bottlenecks in the DPSS, the application, or
in the network in a controlled environment. TerraVision is a complex software suite running on complex
hardware, and patterns of requested data are complex.tv_sim can emulate the TerraVision data request
patterns through the trace-driven operation facility, but is a “null” application that can be run at much
higher overall request rates than real applications.

tv_sim consists of separate sender and receiver processes. The sender process periodically makes data
requests of the DPSS, while the receiver reads the data and maintains a running summary of throughput.
The receiver discards the data so as to concentrate on reading data as fast as the DPSS disk server can
provide it (there is a receiver process per DPSS disk server). Whentv_sim has completed, the sender and
each receiver record a history of the data blocks through all components of the system.

The tv_sim data request sending rate, in terms of block lists per second and blocks per list, can be set by
the user, as can the saving of history logs in the DPSS standard format. The sender can also use trace /
playback files of TerraVision sessions instead of generating its own lists of block requests, as mentioned
above. Additionally, the user can specify the use of multiple data sets, overall running time, and other
runtime characteristics.tv_sim and the DPSS thus can be configured to impose almost arbitrary load pat-
terns on a network and to record the results.

2.2 OS and Network Layer Monitoring

To complement the monitoring at the application level and in the DPSS, we also monitor various operat-
ing system and network conditions. We currently collect and log the following types of information:

• TCP retransmits
• CPU usage (user and system)
• CPU interrupts
• AAL 5 information
• ATM switch buffer overflows
• ATM hosts adapter buffer overflow

3.0 Monitoring Tools

3.1 Common logging format

To easily process the several gigabytes of log files which can be generated from this type of logging, all
events are logged using a common format:

keyword; hostname; seconds; nano-sec; data; data; data;......;

The logging format is a semi-colon separated list of fields. The “keyword” is a unique identifier describ-
ing what is being logged. By convention, the first part of the keyword is a reference to the program that is
doing the logging (e.g.:DPSS_SERV_IN, VMSTAT_SYS_CALLS, NETSTAT_RETRANSSEGS, TV_REQ_TILE).
Each log line contains both the hostname of the system on which the event occurred and a timestamp. The

DRAFT 7September 18, 1996 [ISS.net.measurement-tool.1.9.fm]

timestamp is modeled after the format returned from the Unix “gettimeofday” call. However, since some
systems return seconds and microseconds while others return seconds and nanoseconds, we have chosen
to use nanoseconds for all logging.

The end of every logging record can contain any number of “data” elements. These can be used to store
any information about the logged event that may later prove useful. For example, the
NETSTAT_RETRANSSEGS event records one data element, the number of TCP retransmits since the previ-
ous event; and theDPSS_START_WRITE event records the logical block name, the data set ID, a “user ses-
sion” ID, and an internal DPSS block counter. The log records are “associated” by virtue of being
collected and carried in the data block request message as it works its way through the system, and the
request message is attached to the returned data block.

3.2 Log File Analysis Tools

Tools to analyze log files include perl scripts2 to extract information from log files and write data files in
a format suitable for using gnuplot3 to graph the results. These tools were used to generate the graphs in
Figure 5 - Figure 8. Gnuplot includes various device drivers, and when using the driver for FrameMaker
MIF files, gnuplot groups the graphics primitives that result from plotting data from one file, and at the
next level down, each associated set of line segments, into graphic objects and sub-objects. Therefore,
each of the log file elements, such as block histories, flushed block histories, TCP retransmits, etc., are
organized as objects, and the individual block life-lines are kept as sub-objects within these larger
objects. The FrameMaker graphics tool can manipulate these objects independently, and this proved
invaluable in isolating and marking significant events. This sort of interactive active data analysis is very
useful, and enabled the type of analysis illustrated in Figure 9.

3.3 Use of NTP

To be able to perform meaningful analysis of a network-based system using timestamps, the clocks of all
systems involved must be synchronized. For example, the DPSS name server, DPSS disk server, and
application are typically on different physical hosts scattered over the network. All MAGIC hosts run the
‘xntpd’ program [12], which synchronizes the clocks of each host both to time servers and to each other.
The MAGIC backbone segments are used to distribute NTP data, allowing us to synchronize the clocks of
all hosts to within about 250 microseconds of each other. The location of the NTP servers in the MAGIC
network are shown in Figure 7 (below).

3.4 OS and Network Analysis Tools

Access to operating system source code for Sun’s Solaris 2.4 allowed us to modify the existing tools net-
stat and vmstat to do logging. Netstat displays the contents of various network-related data structures,
while vmstat reports statistics of, among other things, virtual memory, disk, and CPU activity. Both pro-
grams were modified to present only a relevant subset of their information in the common logging format.
In addition, netstat was modified to poll and report continuously (it normally provides only a snapshot of
current activity). Currently we poll at 100 ms intervals, and since the kernel events are not timestamped,
the data obtained this way represents all events in this interval, a circumstance that is represented by bars
at the TCP retransmit points in Figure 5 - Figure 9.)

2. For more information see: http://www.metronet.com/perlinfo/perl5.html

3. For more information see: http://www.cs.dartmouth.edu/gnuplot_info.html

DRAFT 8September 18, 1996 [ISS.net.measurement-tool.1.9.fm]

Also, most network devices (e.g., switches and host interfaces) allow for SNMP queries, which give
information on several aspects of the network device. In the case of ATM switches, for example, we have
used this capability to monitor cell loss and hardware buffer overflows.

4.0 Analysis and Results

This section contains a snapshot of the state of our performance measurements during late 1995. As will
be illustrated, there are several aspects of the overall system that affect performance. One of the aspects
that is changing quickly is workstation ATM interfaces, and the numbers quoted here are primarily
intended to indicate trends rather than analysis of specific products. For example, over the past two years
the throughput of a Fore Systems SBA-200 interface card operating in a Sun SS-20 has gone from
55Mbits/second to 105 Mbits/seconds, due to upgrades in vendor-supplied software (both OS and driver
upgrades). It is therefore likely that specific numbers like these will have changed by the time this paper
is published.

The following sections describe performance results and analysis based on our monitoring and logging
methodology as applied to the DPSS, TerraVision, and related simulators operating together in ATM
LANs and the MAGIC WAN. Throughput and latency results of many software and hardware compo-
nents are given, and some of the resulting performance issues are discussed.

4.1 Network Tuning

Experiments using our monitoring approach have been run in several network environments, including a
local FDDI ring, a local ATM network, the BAGNet metropolitan area ATM network [1], and the MAGIC
network [2]. With the faster networks such as ATM OC-3, system default values for several network
parameters do not provide expected performance. The MTU size, TCP window size, and TCP write
buffer size are several of the parameters that need to be tuned to optimize performance in an ATM net-
work. These issues have been investigated by our colleagues at the University of Kansas and Minnesota
Supercomputer Center, and are described in detail in [3], [6] and [7]. The pacing of ATM cells (band-
width limiting) out of fast workstations such as the DEC 3000/600 is also very important, and is
described in detail in [6].

The cited TCP performance work indicates that for maximum throughput on an ATM LAN, applications
should use 64 Kbyte TCP windows, use 9180 byte MTU, and send data in write buffers of 64 Kbytes. For
maximum throughput on an ATM WAN (with round trip latency of 12 ms), applications should use 128
Kbyte TCP windows, use 9180 byte MTU, and send data in write buffers of 64 Kbytes. Note that setting
the TCP window too large as well as too small will cause the throughput to drop.

DRAFT 9September 18, 1996 [ISS.net.measurement-tool.1.9.fm]

4.2 DPSS Performance

4.2.1 LAN Experiment Environment

We first describe experiments done on an ATM LAN. Table 1 shows the disk server platform configura-
tions that were used for these experiments:

4.2.2 Throughput Measurements

A DPSS disk server’s network throughput is measured by comparing the timestamps taken just before the
network “send” for the current block and previous block. The application receiver’s network throughput
is measured by comparing the timestamps taken upon completing a read of a block from the network with
the previous block. Accurate measurement of peak or burst throughput is difficult because the times-
tamps are taken in user process space, not kernel space. The operating system processes network traffic
and buffers user-level data independent of the application as long as it has sufficient buffer space and pro-
cessing time. Thus when an application performs a read from the network it cannot know whether the
data is coming from the network at that moment, or from the operating system’s local buffers. The elimi-
nation of protocol processing and buffer-copying time from the time that the application believes it is
spending in a read can lead to unrealistically high burst throughput results (e.g. higher than the physical
medium can achieve).

To avoid this problem, we define burst throughput to be the throughput for five consecutive data blocks.
In the throughput numbers in this paper, a block is 48 KB. This is a large enough amount of data to
greatly reduce the effect of OS buffering and processing on the throughput times.

We have measured burst receive throughputs from 44 Mbits/sec (Sun SS10-41) to 134 Mbits/sec (DEC
Alpha 3000/600) for a single DPSS disk server using TCP transport.

Some sample throughput results are given in Table 2, where average throughput is measured over several

thousand blocks. UDP speeds in this tableare from the point of view of the sender, not the receiver. The
sending host may appear to send much more UDP data than the application receives, because some of it
never makes it to the receiver (or through the OS to the application). For the Sun systems cited in the
table, the primary throughput limitation is the memory bandwidth. These systems require three copies of
the data to get from disk to network (one for disk to memory and two for memory to network). Newer
versions of the Sun OS uses single copy TCP implementations, which increases the disk server through-

Table 1 Platform Characteristics for the LAN, DPSS Server Configuration

System Host OS version ATM card ATM
software

disks

sender 1 Sun SS10-42 Solaris 2.4, patch level 27 Fore 140 Mb TAXI 2.3 4

sender 2 Sun SS20-62 Solaris 2.4, patch level 27 Efficient OC-3 3.35 6

sender 3 DEC 3000/600 OSF/1 V3.0 OTTO OC-3 2.2 4

receiver SGI Challenge L IRIX 5.3 Fore 140 Mb TAXI 3.0 -

ATM switch ASX-200 3.0 rev A modules 3.0 -

Table 2 Maximum Server to Application Throughput (per server)

DPSS Server Configuration Burst (Mbits/sec) Average (Mbits/sec)

TCP UDP TCP UDP

Sun SS10-41; fddi 44 43 26 27

Sun SS10-42; fddi 62 56 37 40

Sun SS20-62; fddi 48 75 38 56

Sun SS20-62; atm 68 73 47 50

DEC Alpha; atm 134 - 61 90

DRAFT 10September 18, 1996 [ISS.net.measurement-tool.1.9.fm]

put by 25%. There are typically enough disks operating in parallel that, while they contribute signifi-
cantly to the latency, they do not represent a throughput bottleneck. See [18].

4.2.3 Latency Measurements

The timestamping facility allows for the measurement of the latency of each component of the DPSS. We
have found that several of the latencies are relatively fixed regardless of the DPSS load. For example, the
latency for the name translation is always around two milliseconds, and the time to read a block from disk
is 10 to 30 milliseconds, with an average of 23 milliseconds. The send time from the DPSS name server
to a DPSS disk server is six milliseconds, and the send time (time to copy a block from user space on the
disk server to user space on the receiving host, not including network delay) is 23 milliseconds.

Other latency values vary greatly depending on DPSS load. These are the time spent waiting for the disk
(“read queue”) and the time waiting for the network interface (“send queue”). As expected, the average
read queue latency decreases as more disks are added to the DPSS. Both read queue and send queue
latency also decrease on systems with faster memory copy speed because the timestamping includes var-
ious memory-to-memory copies (all of which are in kernel space - the DPSS implementation does no user
level copying). Send queue latency is mainly dependent on the speed of the receiving host. (TCP writes
block and therefore synchronize, modulo kernel buffer sizes, with the reading of data on the receiver.)

We have measured minimum total DPSS system latency (defined to be the case when the read queue and
send queue latencies are zero) to be between 50 and 100 ms. The maximum latency is the request interval
plus the time to send the block across the network. (This is because the DPSS discards, or flushes, any
outstanding requests whenever a new request arrives. For example, the TerraVision application sends a
list of block requests every 200 ms. If a requested data block doesn’t arrive in 200 ms, TerraVision deter-
mines if it still needs the data, and if so, re-requests it.) The maximum latency in this case is about 220 ms
(200 ms between requests to the DPSS plus the time to send a single block). Therefore on a fully loaded
DPSS, the average total latency is approximately the average of the minimum and maximum latency, or
160 ms. This number has been verified experimentally (see Figure 3). This latency, then, is the “length”
of the data pipeline, and establishes how much prediction and buffering must be done by the client in
order to maintain good interactive response.

4.3 End-to-End Performance Experiments

Experiments have been performed to examine the detailed interaction between a DPSS, whose disk serv-
ers are distributed over both ATM LANs and a wide-area ATM network, and the TerraVision application.
Our initial monitoring experiments have focused on two issues important to high-performance, highly
distributed applications such as the TerraVision <=> DPSS combination.

The first area of interest is the general interaction of the DPSS as a high performance distributed applica-
tion in an ATM WAN.

The second area of interest is that of striping data streams across multiple network interfaces on the appli-
cation host. In particular, we wanted to analyze how well the Onyx received data from multiple ATM
streams, and determine how well the Fore Systems ASX-200 ATM switch and the Onyx handled the mul-
tiplexing and demultiplexing of multiple ATM circuits (TCP streams) on a single circuit.

By way of background (since all of the experiments reported here are based on block request traces from
the TerraVision application), the TerraVision strategy is always to request data that it needs, whether or
not the data has been requested previously. All that the application “knows” is what data it currently
needs: The application does not care that the data might have been previously requested, nor why it might
not have arrived. The overall philosophy is that the DPSS always does its best to deliver requested data,
and if it did not do so, then it could not. This point of view maps very well onto an unreliable datagram

DRAFT 11September 18, 1996 [ISS.net.measurement-tool.1.9.fm]

protocol like RTP: the application can manage the retransmission problem in a way that is optimal to
what the application is currently doing. In TerraVision, for example, the rendered view of the landscape
may have gone beyond the point in the scene that the previously requested data represented, in which case
there is no point in re-requesting (or, in the case of TCP, retransmitting) that data as it is no longer of any
value.

The DPSS disk server semantics are that any time a new list of data block requests come in, all pending
requests are discarded (on a per-user and per-data set basis). For the highest performance, and for the
DPSS to operate at maximum efficiency, the application needs to predict ahead to ensure it requests more
data than the DPSS can supply. Even if the DPSS cannot send all the requested data to the application, it
is possible that the data was at least read from disk into the DPSS memory cache, where it will remain
available for faster retrieval (for a short time). This approach ensures that the data pipeline stays full, and
that disk server resources are never idle.

0

50

100

150

200

250

DPSS “Open Loop” Performance: Latencies in the Architecture
(Latency at performance monitor points - “zero latency” application)

block request
(app to master)

name
translation
(master)

send physical
block list (master

to server)

read queue disk read transport
block to app
(write queue)

C
um

ul
at

iv
e

tim
e,

 m
ill

is
ec

on
ds

MAGIC WAN
Alpha - ATM LAN

Sparc10 (2 CPU) - ATM LAN
Sparc20 - ATM LAN
Sparc20 - FDDI LAN

Monitoring “point” (function) in the end-to-end DPSS - application architecture

Figure 3 Experimental Determination of Overall System Latency

(The data points for each of the several experiments - characterized in the legend in the upper right corner by the plat-
form type of the disk server, except for the “MAGIC WAN” which is an average over several servers - are displaced hor-
izontally within the “monitoring point” labels to make the graph legible - this horizontal shift has no other significance.
The “error bars” indicate variations in the results over several experiment runs. The solid line picks out one experiment
in a LAN environment, and the gray line picks out the MAGIC WAN experiment. The cumulative time is a measured
quantity based on timestamp information rather than a cumulative sum.)

DRAFT 12September 18, 1996 [ISS.net.measurement-tool.1.9.fm]

The traffic rates into and out of the name translation server (“master”) are very low, and while latencies in
this service would have a significant impact on overall performance, this has not been an observable
problem. (This is indicated in the figures showing block trace data where the difference between
app_send and server_in monitor points represent the total latency to get the data requests out of the
application, through the network, translated, and received by the server(s).) The fact that in our
experiments most requests appear to be flushed at theend_read point (which actually indicates that the
block is in the send queue) rather than atstart_read point (in the read queue) indicates that the network
and/or application host is more of a bottleneck than the disks in the test configurations. If the disks were
the bottleneck, then there would be more lines ending atstart_read, because that is where the requests
would be stalled when the next request arrives, and therefore where the “life-line” is terminated by a
flush. Note that in all the performance trace graphs that there are examples of the requested data being
found in the server cache. (The nearly vertical life-lines on the left of the request groups show near zero
read queue residency times.)

Having made the case that this sort of application is probably best optimized by relegating the retransmis-
sion decisions to the application, we nevertheless focus on the analysis of TCP transport, and all of the
detailed analysis in this paper is done for performance experiments that use TCP. The reason for this is
two fold: One, we wish to investigate the operation of TCP in the ATM network environment, and within
a reasonable set of operational parameters, TCP (as will be shown) works well for this application. The
second reason is that in order for RTP (or UDP) to provide a realistic (i.e., mixed application) high perfor-
mance transport, in addition to the application making the decision to retransmit data, most of the TCP
congestion control and response algorithms (e.g., slow start, congestion avoidance, and fast recovery)
would also have to be implemented at the user level, and we have not yet done this.

4.3.1 LAN Experiments

The environment for the LAN experiment results shown below is described in section 4.2.1 above.

Figure 5 - Figure 6 illustrate top-to-bottom, end-to-end experiment results in a LAN environment. Each
color or line style in the graphs indicates data from a different DPSS disk server, and different colors are
also used for “flushed” data requests. (The reason that block requests may be flushed is described below.)
The graphs used to illustrate the results of the experiments plot “real time” on the horizontal axis, and the
monitoring points (see Figure 2) where the timestamps are recorded. As noted earlier, most of the
timestamps represent critical points in the data request-response process from application to distributed
storage system and back.

TerraVision sends a list of data requests every 200 ms, as shown by the nearly vertical lines starting at the
app_send monitor points. (Each line - a “life-line” - represents the history of a data block as it moves
through the end-to-end path.) The initial single life-lines fan out at theserver_in monitor point as the
request lists are resolved into requests for individual data blocks. Each block request is first represented
individually in the read queue. When two life-lines cross in the area betweenstart_read andend_read,
this indicates that a read from one disk was faster that a read from another disk. (This phenomenon is
clearly illustrated for the server represented by the crossing solid lines in Figure 4 at .) This faster read
might be from disks with faster seek and read times (which is not the case in the experiment represented
in Figure 4, as all participating systems used identical disks) or it might be due to two blocks being
adjacent on disk so that no seek is required. (The disk layout algorithm [4] for the tiled image data used
by TerraVision places data so that certain kinds of requests will find data blocks adjacent on disk.)

A

D
R

A
F

T
13

S
eptem

ber 18, 1996
[IS

S
.net.m

easurem
ent-tool.1.9.fm

]

app_send

master_in

master_out

server_in

start_read

end_read

start_write

app_receive

TCP_retrans

8000 8200

B: fast disk
read:
8 ms

C: 20 block average time to
write blocks to network:

8.65 ms

D: 20 block average time to locate a
block (in cache, or not?): 5 ms

F: time for 20 blocks to get from one server
writer to the application reader

total: 204 ms, avg: 10.2 ms
38.5 Mb/sec

B: typical
disk read:

22 ms

E: time to read 20 blocks from three disks
total:123 ms, avg: 6.15 ms
8 MBy/sec (63.7 Mb/sec)

“iss3.log”

“iss2.log”

G: cache hits

Time (ms)M
on

ito
r

 p
oi

nt
s

A: one disk
read faster
than the

other

Figure 4 Detail From a Two Server, LAN, Experiment

DRAFT 14September 18, 1996 [ISS.net.measurement-tool.1.9.fm]

Using these life-line graphs it is also possible to get fairly detailed information on individual operations
within the disk servers. Such detailed performance analysis is illustrated in Figure 4, for example, and
shows us:

• at “B” two different characteristic disk reads (one with an 8 ms read time and one with a 22 ms read
time);

• at “C” the time to cache a block and enter it into the network write queue is about 8.6 ms;
• at “D” the time to parse the incoming request list and see if the block is in the memory cache is

about 5 ms;
• at “E” the overall (four disks operating in parallel) server data read rate is about 8 MB/sec;
• at “F” the actual throughput for this server while dealing with real data requests is about 39 Mb/s

(this throughput is receiver limited, and the “unconstrained” throughput is about three times that
number - as given in Table 2);

• at “G”, there are two cache hits (blocks found in memory) as a result from previously requested, but
not sent, data being requested.

Most of these numbers agree quite closely with the values given in Figure 2, which were estimated from
individual software and hardware timings long before the DPSS actually operated as a system.

Considering the single-server LAN experiment illustrated in Figure 5, notice that many life-lines
terminate atend_read, and that a few also end atstart_read. Any individual data request that is not
satisfied by the disk server before the next request list arrives is flushed (discarded) from all the queues,
but the data is retained in the memory cache. For example, in Figure 5 the life-lines that started at 10,400
ms that were terminated at did so because the TCP write delay (of unknown cause) at “trapped”
those blocks in the TCP write buffer. Block requests that were in the DPSS write queue when the next
request list arrived (at 10,600 ms) are flushed from the queue. However, some of these blocks were
re-requested in the 10,600 ms list, and these re-requests are satisfied very quickly because the data is in
the disk server memory cache. This is seen in the nearly vertical life-lines to the right of .

Figure 6 illustrates “correct” operation of multiple servers. This LAN-based two-server experiment
shows the interaction of life-lines for blocks from different servers, and a case where the independent
servers are behaving almost “perfectly”: There are very regular block delivery patterns that alternate
almost one-for-one between servers.

4.3.2 WAN Experiment Environment

End-to-end performance experiments and monitoring scenarios use data block request traces from the
TerraVision application andtv_sim. The traces for the application running in the MAGIC WAN environ-
ment were obtained with TerraVision running on an SGI Onyx with eight 150 MHz MIPS R4400 proces-
sors, 256 MB of main memory (4-way interleaved), two RealityEngineII graphics processors, and a
single Fore Systems 100 Mb/s TAXI ATM interface. (This configuration is the minimum required to get
good interactive visualization of 3D landscape.)

Experiments were run on the MAGIC ATM testbed, using the hardware shown in Table 3 and the config-
uration illustrated in Figure 7.

B C

A

DRAFT 15September 18, 1996 [ISS.net.measurement-tool.1.9.fm]

A five-minute TerraVision session trace of data block requests was captured, and then using this list of
block requests,tv_sim was used to repeatedly request and receive those blocks. Experiments were run
using DPSS configurations of one disk server, two disk servers, and three disk servers configuration. (The
number of disk servers is independent of the application data request strategy and transparent to the
application, except for establishing the data transfer connections). Log files were collected in the various

Table 3 Platform Characteristics for the WAN, DPSS Server Configuration

System Host OS version ATM card ATM
software

disks

sender 1 (EDC) Sun SS10 Solaris 2.4, patch level 27 Fore 100 Mb TAXI 2.3 4

sender 2 (US West) Sun SS10 Solaris 2.4, patch level 27 Fore 100 Mb TAXI 2.3 2

sender 1 (EDC) Sun SS10 Solaris 2.4, patch level 27 Fore 100 Mb TAXI 2.3 4

receiver (TIOC) SGI ONYX IRIX 5.3 Fore 100 Mb TAXI 2.3 -

ATM switch at TIOC, EDC and MSC ASX-200 3.0 rev A modules 3.0 -

ATM switch at KU DEC AN-2

Figure 5 One Server Test (ATM LAN, one SS-20 as server, tv_sim on DEC 3000/600)

app_send

master_in

master_out

server_in

start_read

end_read

start_write

app_receive

TCP_retrans

10000 10500 11000

"iss.log"

"iss.flush.log"

M
on

ito
r

P
oi

nt
s

C

B

A

1060010400

D

Time (ms)

DRAFT 16September 18, 1996 [ISS.net.measurement-tool.1.9.fm]

distributed components for satisfied and unsatisfied block requests, TCP retransmission information,
CPU usage, and ATM cell loss in the host adapters and ATM switches.

4.3.3 WAN Experiments

Of particular interest is the experiment for the three-server configuration operating in the MAGIC WAN
testbed (Figure 8). The graphs for the LAN experiments (Figure 5 - Figure 6) show mostly expected
behavior: smooth operation, no unexpected latencies, no TCP retransmissions, and so on. However, in the
WAN graph one sees TCP retransmissions and some extraordinarily long delays (up to 5500 ms).

First, let us analyze what the performance monitoring shows directly. In Figure 9 the various key features
of the experiment are indicated. If we look at the long-delayed block life-lines (emphasized in this figure)
we see the characteristic behavior of a data block getting into the write queue (start_write monitor point)
and then incurring some very long delays getting to the application. These long delays are almost always
accompanied by one or more TCP retransmit events. (The elongated blocks at the top of the figure
indicate the interval during which the retransmit took place, and all of the graphical elements are shaded -
black, gray, light gray - to distinguish the analysis and events separately for each of the three servers.)
The start of the long delay transmissions are identified as Ab, Bb, or Cb (servers A, B, and C, in a blocked
state). The reason that the server is blocked as a whole (actually just one application is blocked since each
application has its own TCP connection to the disk server) is that once a block is written to the TCP
socket, the user level flushes have no effect, and TCP will re-send the block until transmission is
successful, even though the data is likely no longer needed and is holding up newer data. The server
unblocks when the a retransmission is successful, letting the next write proceed. These unblock “events”
are labeled Au, Bu, and Cu.

Figure 6 Two Server Test (ATM LAN, two SS-20s as servers, tv_sim on DEC 3000/600)

app_send

master_in

master_out

server_in

start_read

end_read

start_write

app_receive

TCP_retrans

8000 8200 8400 8600 8800 9000 9200

"iss3.log"
"iss2.log"

M
on

ito
rin

g
po

in
ts

Time (ms)

DRAFT 17September 18, 1996 [ISS.net.measurement-tool.1.9.fm]

The impact of this behavior on the server as a supplier of data is shown at the bottom of Figure 10, where
the horizontal bars indicate normal server operation by gray regions, and the blocked state by white
regions. These server operation profiles show almost unbelievably poor performance: With three servers
operating (EDC, USW, TIOC) we obtained throughput of 0.240 Mbits/sec, 3.8 Mb/s, and 4.4 Mb/s
respectively, to deliver 106 blocks in 5 seconds out of about 900 requested blocks. This is in a network
with minimum link speeds of 100 Mb/s and servers each with a verified data delivery capability of at least
45 Mb/s.

Beyond the poor performance, the operation profile clearly shows several places where there seems to be
synchronization among the long-delay intervals. This synchronization probably indicates the
cell-interleaved TCP streams problem reported by Romanow and Floyd [14]. If so, an implementation of
the Romanow and Floyd, Early Packet Discard (EPD) algorithm in the switches might help. (At the time
of the experiments reported here, EPD was not implemented in the MAGIC ATM switches, but should be
by the Spring of 1996, and we will redo the experiments to see if EPD helps.). .

What we believe to be happening in this experiment is that TCP’s normal ability to accommodate
congestion is being defeated by an unreasonable network configuration. The reasoning is as follows.

The final ATM switch (in Figure 7) is where the three server streams come together, and this switch
has a per port output buffer of only about 1500 bytes. The network MTU (minimum transmission unit) is
9180 Bytes (as is typical for ATM networks). The TCP congestion window cannot get smaller than the
MTU, and therefore TCP’s throttle-back strategy is pretty well defeated: On average, every retransmit
fails, even at TCP’s “lowest throughput” setting, because this smallest unit of data is still too large for the

Ft. Leavenworth, KS Kansas City,
KS

Sioux Falls, SD

Minneapolis, MN

X

OC-48

O
C

-1
2

O
C-12

OC-48

Sprint
SONET
Network 70

0
K

m
.

Receiver

DPSS
(sender 3)

DPSS

DPSS
(sender 2)

~
15

 m
s

la
te

nc
y

in
cl

ud
in

g
tw

o
AT

M
 s

w
itc

he
s

OC-48

DPSS
(sender 1)

NTP
Server

NTP
Server

EDC

Univ. of Kansas
Lawrence, KS

ATM
Switch ATM

Switch
Sprint
TIOC

US West
ATM

Switch

DPSS
Master

MSCI

A

Figure 7 The MAGIC Network: Test Configuration

A

D
R

A
F

T
18

S
eptem

ber 18, 1996
[IS

S
.net.m

easurem
ent-tool.1.9.fm

]

app_send

master_in

master_out

server_in

start_read

end_read

start_write

app_receive

TCP_retrans

0 1000 2000 3000 4000 5000 6000

“tvlog.edc”
"tvlog.uswest"

"tvlog.tioc"
"edc.serv_flush.log"

"tioc.serv_flush.log"

"uswest.serv_flush.log"
"edc.net.tcp.retrans.log"
"tioc.net.tcp.retrans.log"

"uswest.net.tcp.retrans.log"

M
on

ito
rin

g
po

in
ts

Time (ms)

Figure 8 Three Server Test (MAGIC ATM WAN, three SS-10s as servers, tv_sim on SGI Onyx)

D
R

A
F

T
19

S
eptem

ber 18, 1996
[IS

S
.net.m

easurem
ent-tool.1.9.fm

]

Cb

A
Bb Bu Bb

Cu

Bb
Cu

Bu
Cb

A

:

server A: “tvlog.edc”

server B: "tvlog.uswest"

server C: "tvlog.tioc"

"edc.net.tcp.retrans.log"

"tioc.net.tcp.retrans.log"

"uswest.net.tcp.retrans.log"

Cb Cu

Bu
Cb Cu

Bb
Cb

Bu

Au

Figure 9 Detailed Analysis of a Three Server, ATM WAN Experiment

D
R

A
F

T
20

S
eptem

ber 18, 1996
[IS

S
.net.m

easurem
ent-tool.1.9.fm

]

master in

server in

start read

end read

start write

app receive

0 1000 2000 3000 4000 5000 6000

server A: “tvlog.edc”
server B: "tvlog.uswest"
server C: "tvlog.tioc"

"edc.net.tcp.retrans.log"

"tioc.net.tcp.retrans.log"
"uswest.net.tcp.retrans.log"

M
on

ito
rin

g
po

in
ts

TCP retrans

0

Time (ms)

1,000 2,000 3,000 4,000 5,000

Cb
Ab

Bb Bu Bb Cu Bb
CuCbBu

Cb Cu Bu Cb
Cu

Bb Cb
Bu Au

Effective
operation of
servers due
to blockage
from TCP
retransmits

(white space
is blocked).
Ab, Au, etc.,

above,
indicate the

related events

A:

B:

C:

synchronized blocking of
geographically dispersed servers

A:
B:
C:

TCP retrans-
missions

Figure 10 Analysis of a Three Server, ATM WAN Experiment

DRAFT 21September 18, 1996 [ISS.net.measurement-tool.1.9.fm]

network buffers.) So, the situation is that three sets of 9 KBy IP packets are converging on a link with
10% that amount of buffering available, resulting in most of the packets (roughly 65%) being destroyed
by cell loss at the switch output port.

4.3.4 Acceptable Solutions and Unacceptable Solutions

TCP’s normal ability to adapt to congestion should be able to make better use of this network, even with
the mis-configured switch. The problem is that TCP is being prevented from providing an effective
response to this congestion because it cannot reduce the congestion window to a small enough size. (We
understand that the Internet Research Task Force, End-to-End transport group is looking at this issue.)

The whole point of TCP is that it should optimize the use of available bandwidth, ideally distributing it
uniformly across all data flows, but at least making best possible use of available bandwidth. In general it
does a reasonable job of this, otherwise the Internet as we know it would not work.

TCP’s adaptation mechanisms normally accommodate mapping a collection of high offered bandwidth
streams (e.g. from the DPSS servers) into a low bandwidth path. The problem revealed in our
experiments is that the TCP adaptation mechanisms make certain assumptions about the network that are
not true for the MAGIC network as configured during our experiments.

The important assumption for the issue at hand is that the amount of output port buffering needs to be of
the order of Number_of_streams× TCP_min_retransmission_size. In other words, there needs to be at
least enough buffering to make the lowest-throughput TCP retry efforts successful.

This is the assumption that is violated in the current MAGIC configuration environment in which our
prototype production experiment performed so badly. The minimum TCP retransmission size is the IP/
ATM MTU size (512 bytes is a typical Internet value). If the output ports of a switch or router are not
large enough to accommodate (at least several) minimum retransmission units, then it is clear that
retransmissions, even at the lowest throughput that the TCP adaptation mechanism [8] can operate at, will
fail, and TCP will therefore fail to provide optimal, or even reasonable, use of link capacity. (Recall that
we obtained less than 10% of the link capacity in the experiment, with the rest of the capacity being
“wasted” (unusable).) With the current switch configuration, the TCP congestion window size should
probably be of the order of 256 Bytes in order to accommodate three streams.

Apart from re-engineering the network - which may or may not be possible in general - or fixing TCP
(which we will do in MAGIC and rerun the experiments) what else can be done?

ATM Congestion Control:

There are various ATM cell-level congestion control schemes being developed by the ATM Forum Traffic
Management Working Group that should help alleviate this problem. The ATM Forum Available Bit Rate
(ABR) service specification includes a mechanism for switches and destinations hosts to send congestion
and flow control information back to the source host congestion is detected. The first version of this
should be available in UNI 4.0, which vendors will probably start shipping by the end of this year.

Small MTU Size:

We can reduce the network MTU to a very small value (e.g. 256 bytes). This should demonstrate the
ability of TCP to deal with this type of congestion, and we expect that this approach will ameliorate the
situation described above. (These experiments will be run in the near future, and we will post the results
to http://www-itg.lbl.gov/DPSS/Experiments.) Experiments done at the University of Kansas, Lawrence
[7] show that both large MTU size (illustrating the problem noted above) and small MTU size
(preventing high performance operation of the servers) lead to low throughput. Figure 11 (data from the

DRAFT 22September 18, 1996 [ISS.net.measurement-tool.1.9.fm]

KU experiments done in the MAGIC testbed) indicates the relationship between TCP throughput with
varying MTU size for the kind of large windows (196KBy) used in a high bandwidth network. This
approach, however, is clearly not an acceptable general solution because it prevents high performance
operation of distributed applications everywhere in the network.

Cell Pacing:

We can also cell pace the disk servers to 1/N of the “broken link” bandwidth. Cell pacing is bandwidth
limiting at the level of ATM cells. Different manufacturers implement this in different ways, but one
common way is to set the link to CBR (continuous bit rate) at some reduced bandwidth (e.g. 30 Mbits/
sec). This approach assures that cells arrive at the switches spread out over time, rather than in high speed
bunches, as would be the case when bandwidth limiting is done at the IP level. (In that case the average
cell output might be 30 Mb/s, but each IP packet would likely come in 155 Mb/s bursts.) The cell pacing
experiment has been done: we have cell-paced all of the DPSS servers at 1/3 the final link capacity so that
we know that the total offered load does not exceed the output link capacity of the final switch. Not
surprisingly, this approach corrects all of the observed anomalies. Under these conditions, all three
servers provided roughly equal throughput of 30 Mb/s, and the delivery of blocks was “well behaved”.
(See Figure 12.)

However, from our point of view, this again is not an acceptable solution. It solves the problem by
reducing everything to the lowest common denominator. It also assumes that you will know a priori how
many streams will be coming a given link. As a “lowest common denominator” approach, this does not
allow individual servers to use available bandwidth when, e.g., other servers are not transmitting
because the data happens not to be evenly distributed; when a server or network link fails; etc.

0

5

10

15

20

25

1000 2000 3000 4000 5000 6000 7000 8000 9000

MTU size

T
hr

ou
gh

pu
t,

M
b/

s

Figure 11 Single Stream Throughput vs. MTU Size for TCP Using Large Windows in an ATM
WAN

D
R

A
F

T
23

S
eptem

ber 18, 1996
[IS

S
.net.m

easurem
ent-tool.1.9.fm

] app send

master in

master out

server in

start read

end read

start write

app receive

TCP retrans

800 1000 1200 1400

DPSS/TV logs, MAGIC WAN, ATM cell pacing = 32 Mbits/sec for each server

"edc.log"

"tioc.log"

"uswest.log"

M
on

ito
rin

g
po

in
ts

Time (ms)

Figure 12 The Three Server ATM WAN Experiment with Cell Pacing

DRAFT 24September 18, 1996 [ISS.net.measurement-tool.1.9.fm]

Re-engineering the Network:

The ATM LAN experiments reported above were done using a Fore Systems ATM switch with rev. C
network modules. These modules (set of four output ports and line drivers) have large output port buffers,
and this appears to solve the congestion problem that we have been describing for most situations. These
new switch output modules have 624 KBytes of buffering, so assuming minimum TCP segment sizes of
9180 Bytes (the ATM MTU), the switch module should be able to support up to 69 simultaneous
maximally throttled TCP connections.

In the case of the MAGIC testbed, we can and are, re-engineering the network. In this case, the small
buffer switch in the final link will be upgraded to provide much larger output port buffering. Once this is
done, we will run a range of experiments, including varying the switch output port buffer size, turning
“early packet discard” off and on, etc. to verify that the various changes produce the expected results.
Again, these experiments will be posted to the URL indicated above.

5.0 Computer Platform-Based Performance Issues

The second main issue that we have investigated in our quest for high performance distributed
applications is the limits on getting data into and out of the computer systems attached to the networks.
There are several issues in this regard.

The first issue is that the memory bandwidth of most workstations is relatively low compared to the
processor speed, and even some I/O devices. Since DMA devices do not typically write directly into
cache memory, I/O performance is limited by the transfer speed of the bulk memory sub-system. Early
recognition of this fact lead us to design the DPSS server code as a collection of independently operating
threads that only manipulate pointers - they never copy data in memory. This means that, to first order, the
performance of a network disk system like the DPSS is dominated by the number of copies through
memory needed to get data from disk to network. This is typically three: one for disk to memory and two
for memory to network. We have run a simple memory bandwidth test that is designed to defeat the cache
and measure bulk memory throughput, and for almost any platform we can then say with reasonable
accuracy that the platform performance as a network disk server is 1/3 of the memory bandwidth.

Since we do not expect memory bandwidth (unlike processor speed) to improve rapidly, the key to better
distributed system performance is in getting around the memory bandwidth limitations.

The easiest way to gain performance, then, is to eliminate copies. In the several years that we have
worked on network disk systems, we have seen TCP implementations go from two copies to one copy in
some production systems, and zero copy implementations discussed in the research literature. (See, for
example, [5].)

Apart from memory bandwidth being a general limitation, ATM workstation interfaces and associated
protocol stacks need to be highly optimized. This software did not start out that way, but progress is being
made. As shown in Figure 13 for the one stream case, we have seen a 2 - 2.5 times increase in the
throughput of workstation ATM interfaces in the past two years.

The second approach to gaining performance is to make use of parallelism in the platform hardware.

In addition to application, server, device driver, and OS development, the implementation of the DPSS
involved some fairly careful evaluation and integration of hardware sub-systems. Our experience
indicates that one seldom gets more than on the order of half the “raw” device performance once the

DRAFT 25September 18, 1996 [ISS.net.measurement-tool.1.9.fm]

device is integrated into the system, and that “independent” sub-systems are independent only in
(sometimes small) degrees.

However, in important and mature sub-systems like memory and disk, the “interference” between
sub-systems is usually well managed in both a parallel access (e.g. memory) and parallel operations (e.g.
disk) mode. This situation is illustrated by the memory sub-system performance that we have determined
for several workstations (in terms of memory - not cache - throughput). (See Figure 14.) For all multiple
CPU systems that we looked at, the performance of parallel CPU access to memory increases nearly
linearly in the unloaded regime, and levels off and degrades very little in the saturated regime. For
example, for the SGI we know that the memory throughput is just over 100 MBytes/sec, and that rate is
achieved and sustained with four CPUs and greater than five processes accessing memory
“simultaneously”. (Note that our measure of “throughput” is a copy - a read and a write - so is one-half of
the value that manufacturers typically quote.)

However, our attempts to get similar parallelism by striping data streams across ATM network interfaces,
especially for reading from the network, has not been nearly so successful. There has been some progress,
and Figure 13 shows results for striping data across multiple ATM interfaces. For ATM network
interfaces and device drivers, as the 1994 -> 1996 change illustrated in Figure 13 indicates, we are seeing
improvements in “sub-system” performance, but the more complex issue of gracefully sharing platform
hardware and system resources in saturated, parallel network device operation environments still requires
considerable work.

Figure 13 shows the limited gains obtained from sending multiple, simultaneous TCP streams to an SGI
Onyx using two ATM network interfaces. (Note that this phenomenon is not unique to SGI and exists for
most of the other platforms that we have tested, but the Onyx is the only platform capable of running the
TerraVision application, so we have examined it in some detail.) In early tests the aggregate throughput

Figure 13 Striping Across ATM Interfaces: Multiple Input Data Streams on Multiple
Network Adapters

(Multiple senders supplied data to a single system with two interfaces. The senders
were always dissimilar systems - i.e., the sender and receiver were never from the same
manufacturer.)

1 2 3 4

Number of simultaneous streams into one or two interfaces
(triangle = 1 interface case, stars = 2 interface case)

0

50

100

150

200

250

T
hr

ou
gh

pu
t,

M
b/

s

Performance of Multiple ATM Interfaces
Receiving Multiple Data Streams on a Single System

Offered load

Recieve rate (1996)

Recieve rate (1995)

Recieve rate (1994)

FDDI recieve rate (1994)

DRAFT 26September 18, 1996 [ISS.net.measurement-tool.1.9.fm]

actually decreased for more than three simultaneous streams, and all indications were that either the OS
or the ATM interface was dropping large numbers of cells. In recent tests, the overall throughput has
increased substantially, but we still do not see even near linear speed ups when striping over interfaces. At
the moment it is not clear why this is happening, and we are currently working with engineers from
several workstation and ATM interface manufacturers to resolve this problem.

.

.

6.0 Conclusions

In order to achieve high end-to-end performance in widely distributed applications, a great deal of analy-
sis and tuning is needed. In the MAGIC testbed we are evolving a methodology that includes net-
work-wide precision time sources and extensive instrumentation for time, latency, and throughput at all
levels of the network, operating system, and applications. We monitor a large collection of parameters
simultaneously (from the ATM level all the way up through disk performance on the storage servers and
the application’s use of the delivered data) in order to identify and correct performance bottlenecks. This
top-to-bottom, end-to-end approach is proving to be a very useful mechanism for analyzing the perfor-
mance of distributed applications in high-speed wide-area networks. The approach is letting us identify
any and all of the issues that affect performance, and to help determine which hardware or software com-
ponents are the bottleneck. In one experiment described in this paper, we were able to use this mechanism
operating in the MAGIC WAN ATM network to demonstrate that some very poor performance was due
to a large number of TCP retransmissions, which in turn were due to the interaction of network parame-
ters, TCP, and undersized output port buffers in one critically located ATM switch. As the bottlenecks are

Figure 14 “Bulk” Memory Copy Performance (uncached data, all pages in physical memory)

1 2 3 4 5 6 7 8 9 10

Number of Processes Accessing Memory
(stars indicate number of CPUs)

0

20

40

60

80

100

T
hr

ou
gh

pu
t,

M
B

y/
s

Memory Sub-System Performnace

SGI Onyx, 4CPU, 150 MHz, 2-way interleave mem.

Sun SPARC-1000, 6 CPU, 40MHz

SGI Chl-L, 2 CPU, 150 MHz, 1-way interleave mem.

DEC Alpha 2100, 2 CPU, 275 MHz

DEC Alpha-400, 1 CPU

Sun SPARC-10/55, 1 CPU

DRAFT 27September 18, 1996 [ISS.net.measurement-tool.1.9.fm]

identified and resolved, we will hopefully make progress toward the goal of composable, high perfor-
mance modules that do not have to be tuned as an integrated system.

7.0 Future Work

We are refining the tools and the measurement techniques that capture and log events, and several of the
other MAGIC consortium members are doing the same. (For example, a number of the “events” currently
collected are the results of watching system variables for some interval, and then using the interval
mid-point as the time stamp, when we should be getting the actual event timestamp.) We hope to be able
to use the log files from the DPSS client library as “playback” files for ‘netspec’[9], which is a distributed
network performance measurement tool that is being designed and developed at the Telecommunications
and Informations Sciences Laboratory, University of Kansas. Netspec supports multiple connections per
session, and it will support multiple protocols. This will allow us to easily recreate many different traffic
scenarios.

Apart from the immediate need for performance in MAGIC, the larger question that we hope to address
by this methodology is whether high-performance use of networks, computing platforms, middleware,
and applications has to be treated as a “system” problem (that is, all components considered and opti-
mized together) or whether, as we find and correct problems, we will end up with an environment in
which widely distributed, high-performance applications can be build by composing “stock” components,
both hardware and software.

This work is ongoing, and progress reports will be published at http://www-itg.lbl.gov/DPSS.

8.0 References

[1] “BAGNet: A Metropolitan Area ATM Network” (http://www-itg.lbl.gov/BAGNet.html)

[2] “The MAGIC Gigabit Network” (http://www.magic.net/)

[3] Cavanaugh, John, Timothy Salo, “Internetworking with ATM WANs”, (available as http://
www.msci.magic.net/docs/magic/ip-atm.ps)

[4] Chen, L. T. and D. Rotem, “Declustering Objects for Visualization”, Proc. of the 19th VLDB (Very
Large Database) Conference, 1993.

[5] Chu, H-k. J., “Zero-Copy TCP in Solaris”, proceedings of USENIX 1996 Annual Technical Confer-
ence, January 22-26, 1996, San Diego, CA (http://www.usenix.org/publications/library/proceed-
ings/sd96/)

[6] Evans, Joseph B., Victor S. Frost, Gary J. Minden, “TCP and ATM in Wide Area Networks”,
CNRI Gigabit Network Workshop ‘94. (http://www.magic.net/tcp/overview.html)

[7] Ewy, B. J., J.B. Evans, G.J. Minden, and V. S. Frost, “TCP/ATM Experiences in the MAGIC Test-
bed”, Fourth IEEE Symposium of High Performance Distributed Computing, August 1995, pp.
87-93.

[8] Jacobson, V., R. Braden, and D. Borman, “TCP Extensions for High Performance,” Internet Engi-
neering Task Force, Request for Comments (RFC) 1323, May, 1992. (Available from http://ds.inter-
nic.net/ds/dspg1intdoc.html.)

[9] Jonkman, Roelof J.T., “An Overview of NetSpec”, Telecommunications & Information Sciences
Laboratory, University of Kansas. (http://www.tisl.ukans.edu/Projects/AAI/products/netspec/)

[10] Lau, S, and Y. Leclerc, “TerraVision: a Terrain Visualization System,”, Technical Note 540, SRI
International, Menlo Park, CA, Mar. 1994. Also see: http://www.ai.sri.com/~magic/terravision.html

 Lawrence Berkeley National Laboratory
WEJohnston@lbl.gov

28September 18, 1996 4:39 pm [ISS.net.measurement-tool.1.9.fm]

[11] Mathis, M., J. Mahdavi, S. Floyd, A. Romanow, “TCP Selective Acknowledgment Options”,
Internet Draft available as: ftp://ds.internic.net/internet-drafts/draft-ietf-tcplw-sack-00.txt

[12] Mills, D., “Simple Network Time Protocol (SNTP)”, RFC 1361, University of Delaware,
August 1992.

[13] Richer, I. and B. B. Fuller, “An Overview of the MAGIC Project,” M93B0000173, The MITRE
Corp., Bedford, MA, 1 Dec. 1993. (Available from http://www.magic.net/
MAGIC_Summary.ps.)

[14] Romanow, A., and Floyd, S., “Dynamics of TCP Traffic over ATM Networks.” IEEE JSAC, V.
13 N. 4, May 1995, p. 633-641. (An earlier version appeared in SIGCOMM ‘94, August 1994,
pp. 79-88.) See http://ftp.ee.lbl.gov/floyd/epd.html

[15] Schulzrinne, H., S. Casner, R. Frederick and V. Jacobson “RTP: A Transport Protocol for
Real-Time Applications”, An Internet Request for Comments (RFC), January 1996. Available
from: ftp://ds.internic.net/rfc/rfc1889.txt

[16] Stevens, R. W.,TCP/IP Illustrated, Volume 1 The Protocols, Addison-Wesley Professional
Computing Series, 1994.

[17] Tierney, B., W. Johnston, L. T. Chen, H. Herzog, G. Hoo, G. Jin, J. Lee and D. Rotem, “System
Issues in Implementing High Speed Distributed Parallel Storage Systems”, Proceedings of
USENIX High Speed Networking Symposium, August 1994, (Available
from http://www-itg.lbl.gov/DPSS/papers.html.)

[18] Tierney, B., W. Johnston, H. Herzog, G. Hoo, G. Jin, and J. Lee, “Distributed Parallel Data Stor-
age Systems: A Scalable Approach to High Speed Image Servers”, Proceedings of ACM Multi-
media ‘94, Oct. 1994, LBL-35408. (Available as http://
www-itg.lbl.gov/DPSS/papers.html.)

[19] The most current (and evolving) description of the DPSS technology is in the report LBL-36002
at http://www-itg.lbl.gov/DPSS/papers.html.

[20] Tierney, B., Johnston, W., Herzog, H., Hoo, G., Jin, G., and Lee, J., “System Issues in Imple-
menting High Speed Distributed Parallel Storage Systems”, Proceedings of the USENIX Sym-
posium on High Speed Networking, Aug. 1994, LBL-35775. Also see http://www-itg.lbl.gov/
DPSS/papers.html.)

[21] Tierney, B., Johnston, W., Chen, L.T., Herzog, H., Hoo, G., Jin, G., Lee, J., “Using High Speed
Networks to Enable Distributed Parallel Image Server Systems”, Proceedings of Supercomput-
ing ‘94, Nov. 1994, LBL-35437. Available from http://www-itg.lbl.gov/DPSS/papers.html.)

